Computer Engineering: MS Program Overview

Introduction

Prof. Steven Nowick
(nowick@cs.columbia.edu)
Chair, Computer Engineering Program
Overview of Program

• Interdisciplinary program: joint between CS and EE
 • Covers areas in the “overlap” between the 2 departments

• Popular area in many top schools:
 • Computer (systems) Engineering programs (Stanford, UCLA, USC)
 • ECE departments (CMU, UCSD, U. Wisconsin)
 • CSE departments (U. Washington, UCSD)
 • EECS departments (MIT, UC Berkeley, U. of Michigan)

• History at Columbia:
 • BS program: since 1994
 • MS program: since 2004
Overview of Program (cont.)

- Fall-10 MS class: 22 entering students
 - 2010: 110 applicants (Fall only!): \textit{>50\% increase over Fall 2009!}

- Computer Engineering Faculty
 - 1994: 3 total
 - CS (2): Nowick, Unger
 - EE (1): Zukowski
 - 2010: 9 total
 - CS (7): Carloni, Edwards, Kim, Misra, Nowick, Rubenstein, Sethumadhavan
 - EE (2): Shepard, Zukowski
Computer Engineering Research

- Faculty strength across wide range of high-impact/cutting-edge areas
 - many collaborative research projects + grants
- 7 main research areas:
 - Digital/VLSI Design
 - Computer Architecture/Parallel Systems
 - Embedded Systems
 - System-on-Chip (SoC)/Network-on-Chip (NoC)
 - Asynchronous/Mixed-Timing Design
 - Computer-Aided Design (CAD)
 - Networking and Communications
- 2-5 faculty per area (including overlaps)
Highlights: Faculty Research Projects

- Next-generation parallel computers (software/hardware) [Kim, Sethumadhavan]
- Bio-chips: mixing electronics + DNA/proteins [Shepard]
- “Systems-on-chip”/“networks-on-chip” [Carloni, Nowick]
- Embedded systems: consumer electronics, automotive [Edwards]
- Advanced sensor networks [Rubenstein, + other EE faculty: Zussman, Kinget, et al.]
- Clockless digital systems [Nowick]
- Mixed photonic/digital systems [Carloni, Nowick + EE faculty Bergman]
- Gene network simulation [Zukowski]
- Intelligent buildings [Carloni]
Research: Digital/VLSI Design

- Designing complex, high-speed and low-power digital systems:
 - pipelined interconnect fabrics
 - “security-hardened” components
 - fault-tolerant circuits
 - ultra-low power systems
 - high-speed arithmetic circuits

- Advanced VLSI design:
 - clocking structures: resonant clocking
 - A/D converters, filters, sensors, memories, biochips, neural networks
 - adaptive voltage scaling

Faculty: Nowick, Sethumadhavan, Shepard, Zukowski
Research: Computer Architecture/Parallel Systems

- Composable lightweight processors
- Tile-based multicore systems
- Parallel software: programming/compilers
- Shared memory parallel processors (synchronous, asynchronous)
- Automatic legacy code parallelization/compiler optimization
- Memory system design
- Simulation of complex parallel systems

Faculty: Kim, Sethumadhavan (also, Carloni, Nowick)
Research: Embedded Systems

• “Embedded systems” = processors used for dedicated applications
 • automotive, cell phones, digital cameras, ...

• Challenge: integrated design/optimization of hardware + software

• Areas:
 • software/hardware compilers
 • precision real-time systems
 • modeling and synthesis of device drivers
 • domain-specific languages
 • code generation and optimization

Faculty: Edwards (also, Carloni)
Research: System-on-Chip/Network-on-Chip

- “System-on-Chip” (SoC) = integrate entire system on single chip
- “Network-on-Chip” (NoC) = connected with flexible communication fabric
- Goal: scalable structures for complex heterogeneous digital systems
- Areas:
 - composable “latency-insensitive” systems
 - “GALS” (globally-async, locally-sync) systems
 - performance optimization
 - performance analysis and optimization
 - photonic on-chip networks

Faculty: Carloni (also, Nowick, Sethumadhavan)
Research: Asynchronous/Mixed-Timing Design

• Asynchronous = “clockless” systems
 • Digital components communicate on flexible local channels
 • Potential benefits:
 • low power, modularity (“plug-and-play” assembly)
 • design ease, no clock distribution
 • Applications:
 • space measurement chips (with NASA Goddard)
 • consumer electronics
 • high-speed flexible communication fabric for parallel processors

• Mixed-Timing = “GALS-style” (globally async/locally sync) systems
 • Potential benefits:
 • integrate different clocked components using asynchronous “fabric”

Faculty: Nowick (also, Shepard)
Research: Computer-Aided Design (CAD)

- Goal = automated design/optimization tools (software) for digital systems
- Major driver for advances in microelectronics: multi-billion dollar industry
- Includes:
 - develop sophisticated optimization algorithms
 - for circuits and systems
 - software tool package development
- Targets:
 - cost functions: power, area, latency, throughput, robustness
 - also, provides user options for “design-space exploration”
- Integrated cross-cutting research: software+theory (algorithms)+hardware

Faculty: Nowick (also, Carloni, Edwards)
Research: Networking and Communications

- Basic problem: managing and moving information
- Physical <-> logical layers
- Performance modeling/analysis/design of communication algorithms
- Internet, ad-hoc, local communications
- Optics, wireless
- Mobile sensor networks
- Secure/resilient communication strategies
- Self-tuning/adaptive structures

Faculty: Misra, Rubenstein (...more in EE/CS networking groups)
MS Project Opportunities

- Worked out individually with faculty
 - for credit: signing up for project courses
 - for stipend: over summers

- Typically requires student:
 - to demonstrate sufficient background (and strengths)
 - usually, must first take relevant 4000-/6000-level course here (... and do well!)
Computer Engineering Faculty: Summary

- Prof. Luca Carloni (CS) [luca@cs.columbia.edu]
- Prof. Stephen Edwards (CS) [sedwards@cs.columbia.edu]
- Prof. Martha Kim (CS) [martha@cs.columbia.edu]
- Prof. Vishal Misra (CS) [misra@cs.columbia.edu]
- Prof. Steven Nowick (CS) [+ EE]: chair [nowick@cs.columbia.edu]
- Prof. Dan Rubenstein (CS) [danr@cs.columbia.edu]
- Prof. Simha Sethumadhavan (CS) [simha@cs.columbia.edu]
- Prof. Ken Shepard (EE) [shepard@ee.columbia.edu]
- Prof. Charles Zukowski (EE) [caz@ee.columbia.edu]

Contacts:
Administrative: Elsa Sanchez (elsa@ee.columbia.edu) - 13th Floor Mudd, EE office
Faculty: Prof. Steven Nowick, chair (nowick@cs.columbia.edu) - 508 CS Building